Up-Regulation of SOX9 in Sertoli Cells from Testiculopathic Patients Accounts for Increasing Anti-Mullerian Hormone Expression via Impaired Androgen Receptor Signaling
نویسندگان
چکیده
BACKGROUND Testosterone provokes Sertoli cell maturation and represses AMH production. In adult patients with Sertoli-cells-only syndrome (SCOS) and androgen insensitivity syndrome (AIS), high level of AMH expression is detected in Sertoli cells due to defect of androgen/AR signaling. OBJECTIVE We postulated that up-regulation of SOX9 due to impairment of androgen/AR signaling in Sertoli cells might explain why high level of anti-Mullerian hormone (AMH) expression occur in these testiculopathic patients. METHODS Biological research of testicular specimens from men with azoospermia or mouse. The serum hormone levels were studied in 23 men with obstructive azoospermia, 33 men with SCOS azoospermia and 21 volunteers with normal seminograms during a period of 4 years. Immunohistochemical staining and reverse-transcription PCR were used to examine the relationships among AR, SOX9 and AMH expression in adult human and mouse testes. The ability of AR to repress the expression of SOX9 and AMH was evaluated in vitro in TM4 Sertoli cells and C3H10T1/2 cells. RESULTS SCOS specimens showed up-regulation of SOX9 and AMH proteins but down-regulation of AR proteins in Sertoli cells. The mRNA levels of AR were significantly lower and the SOX9, AMH mRNA levels higher in all SCOS patients compared to controls (P< 0.05). The testosterone levels in the SCOS patients were within the normal range, but most were below the median of the controls. Furthermore, our in vitro cell line experiments demonstrated that androgen/AR signaling suppressed the gene and protein levels of AMH via repression of SOX9. CONCLUSIONS Our data show that the functional androgen/AR signaling to repress SOX9 and AMH expression is essential for Sertoli cell maturation. Impairment of androgen/AR signaling promotes SOX9-mediated AMH production, accounts for impairments of Sertoli cells in SCOS azoospermic patients.
منابع مشابه
SOX9 and SF1 are involved in cyclic AMP-mediated upregulation of anti-Mullerian gene expression in the testicular prepubertal Sertoli cell line SMAT1.
In Sertoli cells, anti-Müllerian hormone (AMH) expression is upregulated by FSH via cyclic AMP (cAMP), although no classical cAMP response elements exist in the AMH promoter. The response to cAMP involves NF-κB and AP2; however, targeted mutagenesis of their binding sites in the AMH promoter do not completely abolish the response. In this work we assessed whether SOX9, SF1, GATA4, and AP1 might...
متن کاملLack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development.
CONTEXT Puberty is associated with increased testicular testosterone (TT) synthesis, which is required to trigger spermatogenesis and to repress anti-Mullerian hormone (AMH) production. However, testicular gonadotropin stimulation during fetal and newborn life neither initiates spermatogenesis nor represses AMH. OBJECTIVE We postulated that a lack of androgen receptor (AR) expression in Serto...
متن کاملExpression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides
Gonadal differentiation is tightly regulated by the initial sex determining gene and the downstream sex-related genes in vertebrates. However, sex change in fish can alter the sexual fate from one sex to the other. Chemical-induced maleness in the protogynous orange-spotted grouper is transient, and a reversible sex change occurs after the chemical treatment is withdrawn. We used these characte...
متن کاملP-231: Androgen Receptor Gene Expression in Azoospermia Men
Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...
متن کاملHormonal and cellular regulation of Sertoli cell anti-Müllerian hormone production in the postnatal mouse.
Anti-Müllerian hormone (AMH) is secreted by immature testicular Sertoli cells. Clinical studies have demonstrated a negative correlation between serum AMH and testosterone in puberty but not in the neonatal period. We investigated AMH regulation using mouse models mimicking physiopathological situations observed in humans. In normal mice, intratesticular, not serum, testosterone repressed AMH s...
متن کامل